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SFESS: Score Function Estimators for k-Subset Sampling

Are score function estimators a viable option for learning with k-subset sampling?

Klas Wijk, Ricardo Vinuesa, Hossein Azizpour

Problem

Method Experiments

CodePaper

Keywords

Future Work

Variance reduction
Vanilla score function estimators (REINFORCE) suffer from high 
variance. There are many options for variance reduction, like using a 
moving average or learning the baseline. We use a simple 
multi-sample control variate which only assumes that we can draw 
and evaluate multiple samples.

Figure 1: Three families of methods for gradient estimation: a) score function 
estimators compute a Monte-Carlo estimate of the gradient, b) approximate 
pathwise gradients compute a gradient estimate using the downstream 
function’s gradient, c) relaxed sampling circumvents the problem by using 
relaxed samples.

Why score function estimators?
Unlike pathwise gradient estimators, score function estimators do not 
assume that the downstream function is differentiable and allow 
computing unbiased gradient estimates.

Differentiable k-Subset Sampling
● Unlike e.g., Normal distributions, discrete distributions cannot be 

rewritten using the reparametrization trick, which complicates 
differentiable optimization.

● Current methods for sampling k-subsets, or k-hot vectors, are based 
on either approximate pathwise gradients or relaxed sampling. We 
investigate how score function estimators compare to these 
approaches.

Computing the score function
The score function

● k-subset sampling, k-hot
● Gradient estimation, score function estimators
● Feature selection, discrete representation learning

● Single-sample variance reduction
● Combining score function and 

pathwise gradient estimators
● Applications with non-differentiable 

downstream functions

The first term is a Bernoulli score function and is easy to compute. 
The second term looks trickier. It is the score function of a Poisson 
binomial distribution. A naive computation would iterate over all 
possible subsets. It turns out that it can be computed efficiently using 
a fast Fourier transform instead.

For certain downstream functions, drawing multiple samples for 
variance reduction could be impractical. In our experiments, 
however, drawing 32 samples had little effect on the wall-clock 
time.

Figure 3: Three experimental settings: i) feature selection uses k-subset 
sampling to subsample the input, ii) variational autoencoders uses k-subset 
sampling in to learn a discrete representation of the input, and iii) k-nearest 
neighbors uses k-subset sampling to select the nearest (labeled) neighbors 
of an unlabeled example and classify it using them.

Figure 4: Variance reduction as the 
number of samples increases.

Figure 3: Bias and variance of 
different estimators in a toy 
experiment.

SFESS performs similarly to state-of-the-art methods across the 
three experimental settings while providing two key advantages: 
unbiased gradient estimates and not requiring a differentiable 
downstream function. The main limitation is requiring multiple 
samples for variance reduction.


