gy

By,
fKTH®

% VETENSKAP %’

o8 OCH KONST 2%

B

e k-subset sampling, k-hot
e Gradient estimation, score function estimators
e Feature selection, discrete representation learning

Differentiable k-Subset Sampling

e Unlike e.g., Normal distributions, discrete distributions cannot be
rewritten using the reparametrization trick, which complicates
differentiable optimization.

e Current methods for sampling k-subsets, or k-hot vectors, are based
on either approximate pathwise gradients or relaxed sampling. We
investigate how score function estimators compare to these
approaches.
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Why score function estimators?

Unlike pathwise gradient estimators, score function estimators do not
assume that the downstream function is differentiable and allow
computing unbiased gradient estimates.
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Figure 1: Three families of methods for gradient estimation: a) score function
estimators compute a Monte-Carlo estimate of the gradient, b) approximate
pathwise gradients compute a gradient estimate using the downstream
function’s gradient, c) relaxed sampling circumvents the problem by using
relaxed samples.

Computing the score function
The score function
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Bernoull Poisson binomial

The first term 1s a Bernoulli score function and is easy to compute.
The second term looks trickier. It is the score function of a Poisson
binomial distribution. A naive computation would iterate over all
possible subsets. It turns out that it can be computed efficiently using
a fast Fourier transform instead.

Variance reduction

Vanilla score function estimators (REINFORCE) suffer from high
variance. There are many options for variance reduction, like using a
moving average or learning the baseline. We use a simple
multi-sample control variate which only assumes that we can draw
and evaluate multinle sambles.
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For certain downstream functions, drawing multiple samples for
variance reduction could be impractical. In our experiments,
however, drawing 32 samples had little effect on the wall-clock
time.
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Figure 3: Bias and variance of
different estimators in a toy
experiment.

number of samples increases.

Figure 4: Variance reduction as the
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Figure 3: Three experimental settings: 1) feature selection uses k-subset
sampling to subsample the input, 11) variational autoencoders uses k-subset
sampling in to learn a discrete representation of the input, and iii) k-nearest
neighbors uses k-subset sampling to select the nearest (labeled) neighbors
of an unlabeled example and classity it using them.

SFESS performs similarly to state-of-the-art methods across the
three experimental settings while providing two key advantages:
unbiased gradient estimates and not requiring a differentiable
downstream function. The main limitation is requiring multiple
samples for variance reduction.

e Single-sample variance reduction Paper Code

e Combining score function and
pathwise gradient estimators

e Applications with non-differentiable
downstream functions
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