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e Feature selection
e Gumbel-Softmax
e End-to-end differentiable optimization

Embedded Feature Selection

e CAEs enable the simultaneous learning of complex models and
feature selection, extending beyond classical linear methods.

e Currently state-of-the-art in neural network-based embedded
feature selection.

CAE Training Instability

We identify that CAEs often learn duplicate selections, and it affects
convergence speed and generalization.
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Figure 1: Top) Unstable reconstruction loss. Bottom) The Unique
Percentage, a measure of the diversity of feature selections. We
observe that the learning of duplicate selections is correlated with
training instability.
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Concrete Autoencoders and Gumbel-Softmax

CAEs learn features through k stochastic nodes. Each node entails:
Drawing a sample m; < R from a learned Gumbel-Softmax (GS)
distribution

exp{(loga; +g,)/T}
S exp{(logeji +g;,;)/T}

ij

and multiplying it with the input x € RP. Each GS distribution is
parameterized by a learned vector log a, € RP.

Indirect Parameterization

We propose parameterizing log a € R™P with an array of learnable
parameters ¥ € RMF with a linear transformation

(W, b), where W = RP* and b = RP.
loga; =W, +b, 1c¢ [K],

Empirically, we observe that this indirect parameterization results in:

e Fewer duplicate selections.
e Increased convergence speed.
e Better performance in classification and reconstruction tasks.
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Figure 2: a) CAE parameterization. b) Indirect parameterization.
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Figure 3: Improved convergence speed, MSE (left), and accuracy
(right) for the ISOLET and Mice Protein datasets.

Table: Accuracy. Comparison to related works on feature selection.

Model MNIST MNIST- ISOLET COIL-20 Smartphone Mice Protein
Fashion HAR

STG 92.29 80.85 84.95 96.80 88.80 68.24

LassoNet 90.06 78.28 84.33 89.37 92.44 77.12

CAE 83.10 73.19 75.82 80.70 82.72 63.10

GJSD 84.38 74.13 77.56 82.10 84.78 68.43

IP-CAE 94.07 82.68 91.85 97.92 93.71 94.26

e Theoretical understanding
e Gumbel-Softmax applications
beyond feature selection
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Embedded feature selection.

e CAEs enable the simultaneous learning of complex models
and feature selection, extending beyond classical linear
methods.

e Currently state-of-the-art in neural network-based embedded
feature selection,

Training instability in CAEs.
We identify that CAEs often learn duplicate selections, and it
affects convergence speed and generalization.
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Figure 1: Top) Unstable reconstruction loss. Bottom) The
Unique Percentage, a measure of the diversity of feature
selections. We observe that the learning of duplicate selections
is correlated with training instability.

Concrete Autoencoders and Gumbel-Softmax
CAEs learn features through k stochastic nodes. Each node
entails:

e Drawing a sample m, < RP from a learned Gumbel-Softmax
(GS) distribution,

exp{(loge; +g,)/T'}
Zzpzl exp{(log ;i +g;,)/T} |

e Multiplying it with the input x € RP.
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Each GS distribution is parameterized with a by a learned vector
log a. & RP.
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Indirect Parameterization Results
We propose parameterizing log a € R™P with an array of

learnable parameters ¥ € R*" with a linear transformation ISOLET

(W, b), where W € R and b € RP. T <
)

loga; =W, +b, iel|K]|, < -9 §

)

Empirically, we observe that this indirect parameterization g -80 5
results in: 0 .
e Less duplicate selections. < -70 2
e Increased convergence speed. =

e Better performance in classification and reconstruction tasks.
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ISOLET and Mice Protein datasets.

Figure 3: Improved convergence speed and accuracy for the

b)
Figure 2: a) CAE parameterization. b) Indirect -
. . Model MNIST MNIST- ISOLET COIL-20 Smartphone Mice Protein
parameterization. Fashion HAR
STG 92.29 80.85 84.95 96.80 88.80 68.24
LassoNet 90.06 78.28 84.33 89.37 92.44 77.12
CAE 83.10 73.19 75.82 80.70 82.72 63.10
GJSD 84.38 74.13 77.56 82.10 84.78 68.43
IP-CAE 94.07 82.68 91.85 97.92 93.71 94.26

Table: Accuracy. Comparison to related works on feature

selection.
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Stacking the k {mj} samples in a matrix M, the selected features
X, can be expressed as:

Xg = Mx,



