We propose an improvement to Concrete Autoencoders (CAEs), a state-of-the-art technique for embedded feature selection in neural networks. By learning an embedding and mapping it to the parameters of the Gumbel-Softmax distribution, our Indirectly Parameterized CAEs (IP-CAEs) improve

Indirectly Parameterized Concrete Autoencoders Alfred Nilsson*, Klas Wijk*, Sai bharath chandra Gutha, Erik Englesson, Alexandra Hotti, Carlo Saccardi, Oskar Kviman, Jens Lagergren, Ricardo Vinuesa, Hossein Azizpour

training stability.

Problem

Keywords

Indirect Parameterization

We propose parameterizing $\log \textit{\textbf{a}} \in \text{R}^{\text{\tiny K} \times \text{\tiny D}}$ with an array of learnable parameters $\Psi \in \mathrm{R}^{K \times P}$ with a linear transformation (W, b) , where $W \in R^{D \times P}$ and $b \in R^D$.

 $\log \alpha_i = \mathbf{W} \boldsymbol{\psi}_i + \mathbf{b}, \quad i \in [K],$

Figure 2: a) CAE parameterization. b) Indirect parameterization.

Empirically, we observe that this indirect parameterization results in:

- Fewer duplicate selections.
- Increased convergence speed.
- Better performance in classification and reconstruction tasks.

Figure 1: Top) Unstable reconstruction loss. Bottom) The Unique Percentage, a measure of the diversity of feature selections. We observe that the learning of duplicate selections is correlated with training instability.

CAE Training Instability

We identify that CAEs often learn *duplicate selections,* and it affects convergence speed and generalization.

Embedded Feature Selection

- CAEs enable the simultaneous learning of complex models and feature selection, extending beyond classical linear methods.
- Currently state-of-the-art in neural network-based embedded feature selection.

Concrete Autoencoders and Gumbel-Softmax

CAEs learn features through *k* stochastic nodes. Each node entails: Drawing a sample $m_j \in \mathbb{R}^D$ from a learned Gumbel-Softmax (GS) distribution

 $\boldsymbol{m}_j = \frac{\exp\{(\log \boldsymbol{\alpha}_j + \boldsymbol{g}_j)/T\}}{\sum_{i=1}^D \exp\{(\log \boldsymbol{\alpha}_{j,i} + \boldsymbol{g}_{j,i})/T\}},$

and multiplying it with the input $\mathbf{x} \in \mathrm{R}^\mathrm{D}.$ Each GS distribution is parameterized by a learned vector log $\boldsymbol{\alpha}_j \in \mathrm{R}^{\mathrm{D}}.$

- Feature selection
- Gumbel-Softmax
- End-to-end differentiable optimization

Indirectly Parameterized Concrete Autoencoders

Embedded feature selection.

- CAEs enable the simultaneous learning of complex models and feature selection, extending beyond classical linear methods.
- Currently state-of-the-art in neural network-based embedded feature selection,

• Drawing a sample $m_i \in \mathbb{R}^D$ from a learned Gumbel-Softmax (GS) distribution,

$$
\boldsymbol{m}_j = \frac{\exp\{(\log \boldsymbol{\alpha}_j + \boldsymbol{g}_j)/T\}}{\sum_{i=1}^D \exp\{(\log \boldsymbol{\alpha}_{j,i} + \boldsymbol{g}_{j,i})/T\}},
$$

Concrete Autoencoders and Gumbel-Softmax

CAEs learn features through *k* stochastic nodes. Each node entails:

We propose an improvement to Concrete Autoencoders (CAEs), a state-of-the-art technique for embedded feature selection in neural networks. By learning an embedding and mapping it to the parameters of the Gumbel-Softmax distribution, our Indirectly Parameterized CAEs (IP-CAEs) improve training stability.

Alfred Nilsson, Klas Wijk, Sai bharath chandra Gutha, Erik Englesson, Alexandra Hotti, Carlo Saccardi, Oskar Kviman, Jens Lagergren, Ricardo Vinuesa, Hossein Azizpour

- Less duplicate selections.
- Increased convergence speed.
- Better performance in classification and reconstruction tasks.

KTH Royal Institute of Technology

Each GS distribution is parameterized with a by a learned vector $\log \textit{\textbf{a}}_j \in \rm{R}^D.$

Figure 1: Top) Unstable reconstruction loss. Bottom) The Unique Percentage, a measure of the diversity of feature selections. We observe that the learning of duplicate selections is correlated with training instability.

Indirect Parameterization

We propose parameterizing $\log \textit{\textbf{a}} \in \rm R^{K\times D}$ with an array of learnable parameters $\Psi \in \mathrm{R}^{K \times P}$ with a linear transformation (W, b) , where $W \in R^{D \times P}$ and $b \in R^D$.

 $\log \bm{\alpha}_i = \bm{W} \bm{\psi}_i$

Results

Figure 3: Improved convergence speed and accuracy for the ISOLET and Mice Protein datasets.

Table: Accuracy. Comparison to related works on feature

selection.

b)

Training instability in CAEs.

We identify that CAEs often learn *duplicate selections,* and it affects convergence speed and generalization.

Figure 2: a) CAE parameterization. b) Indirect parameterization.

$$
+ b, \quad i \in [K],
$$

Empirically, we observe that this indirect parameterization results in:

● Multiplying it with the input **x** ∈ R^D .

Stacking the k $\{{\boldsymbol m}_j\}$ samples in a matrix M , the selected features $\mathbf{x}_S^{}$ can be expressed as:

